Migration of the Drosophila primordial midgut cells requires coordination of diverse PS integrin functions.

نویسندگان

  • M D Martin-Bermudo
  • I Alvarez-Garcia
  • N H Brown
چکیده

Cell migration during embryogenesis involves two populations of cells: the migrating cells and the underlying cells that provide the substratum for migration. The formation of the Drosophila larval midgut involves the migration of the primordial midgut cells along a visceral mesoderm substratum. We show that integrin adhesion receptors are required in both populations of cells for normal rates of migration. In the absence of the PS integrins, the visceral mesoderm is disorganised, the primordial midgut cells do not display their normal motile appearance and their migration is delayed by 2 hours. Removing PS integrin function from the visceral mesoderm alone results in visceral mesoderm disorganization, but only causes a modest delay in migration and does not affect the appearance of the migrating cells. Removing PS integrin function from the migrating cells causes as severe a delay in migration as the complete loss of PS integrin function. The functions of PS1 and PS2 are specific in the two tissues, endoderm and mesoderm, since they cannot substitute for each other. In addition there is a partial redundancy in the function of the two PS integrins expressed in the endoderm, PS1 (alphaPS1betaPS) and PS3 (alphaPS3betaPS), since loss of just one alpha subunit in the midgut results in either a modest delay (alphaPS1) or no effect (alphaPS3). We have also examined the roles of small GTPases in promoting migration of the primordial midgut cells. We find that dominant negative (N17) versions of Rac and Cdc42 cause a very similar defect in migration as loss of integrins, while those of Rho and Ras have no effect. Thus integrins are involved in mediating migration by creating an optimal substratum for adhesion, adhering to that substratum and possibly by activating Rac and Cdc42.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphogenesis in the absence of integrins: mutation of both Drosophila beta subunits prevents midgut migration.

Two integrin beta subunits are encoded in the Drosophila genome. The betaPS subunit is widely expressed and heterodimers containing this subunit are required for many developmental processes. The second betasubunit, betanu, is a divergent integrin expressed primarily in the midgut endoderm. To elucidate its function, we generated null mutations in the gene encoding betanu. We find that betanu i...

متن کامل

FGF control of E-cadherin targeting in the Drosophila midgut impacts on primordial germ cell motility.

Embryo formation requires tight regulation and coordination of adhesion in multiple cell types. By undertaking imaging, three-dimensional (3D) reconstructions and genetic analysis during posterior midgut morphogenesis in Drosophila, we find a new requirement for the conserved fibroblast growth factor (FGF) signaling pathway in the maintenance of epithelial cell adhesion through FGF modulation o...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

The migrations of Drosophila muscle founders and primordial germ cells are interdependent.

Caudal visceral mesoderm (CVM) cells migrate from posterior to anterior of the Drosophila embryo as two bilateral streams of cells to support the specification of longitudinal muscles along the midgut. To accomplish this long-distance migration, CVM cells receive input from their environment, but little is known about how this collective cell migration is regulated. In a screen we found that wu...

متن کامل

Netrins and Frazzled/DCC promote the migration and mesenchymal to epithelial transition of Drosophila midgut cells

Mesenchymal-epithelial transitions (METs) are important in both development and the growth of secondary tumours. Although the molecular basis for epithelial polarity is well studied, less is known about the cues that induce MET. Here we show that Netrins, well known as chemotropic guidance factors, provide a basal polarising cue during the Drosophila midgut MET. Both netrinA and netrinB are exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 126 22  شماره 

صفحات  -

تاریخ انتشار 1999